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We investigate the structure of scaling solutions of Smoluchowski's coagulation 
equation, of the form ck(t)~ s(t) -~' ~o(k/s(t)), where ok(t) is the concentration of 
clusters of size k at time t, s(t) is the average duster size, and ~0(x) is a scaling 
function. For the rate constant K(i, j)  in Smoluchowski's equation, we make the 
very general assumption that K(i, j )  is a homogeneous function of the cluster 
sizes i and j: K(i , j )=a-aK(ai ,  aj) for all a > 0 ,  but we restrict ourselves to 
kernels satisfying K(i, j) / j  ~ 0 as j ~ or. We show that gelation occurs if 2 > 1, 
and does not occur if 2 ~< 1. For all gelling and nongelling models, we calculate 
the time dependence of s(t), and we derive an equation for ~p(x). We present a 
detailed analysis of the behavior of ~p(x) at large and small values of x. For all 
models, we find exponential large-x behavior: q~(x)~ Ax-~e -6x as x-- ,  oo and, 
for different kernels K(i,j) ,  algebraic or exponential small-x behavior: 
~o(x)~Bx ~ or q~(x )=exp( -Cx  I,l+ . . .)  as x~O. 

KEY W O R D S :  Kinetics of clustering; irreversible aggregation; scaling laws 
for cluster size distribution; similarity solutions; self-preserving mass spectrum. 

1. I N T R O D U C T I O N  

In this paper we study the universal (scaling) properties of the solutions of 
Smoluchowski's coagulation equation. A summary of the results presented 
here has been published elsewhere. ~1) 

We recall that Smoluchowski's coagulation equation is a mathematical 
model describing irreversible aggregation processes, which consists of an 
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infinite set of chemical rate equations for the concentrations ck(t) of 
clusters of size k (k = 1, 2,...), or k-mers: 

1 
6k(t)=~ ~ K(i, j)  ci(t)cj(t)--ck(t) ~ K(k , j )  cj(t) 

i + j = k  j ~  1 

(1.1) 

Here K(i, j)  is the rate constant for the combination of an i- and a j-mer. 
Possible breakup of clusters is not taken into account. For a review on 
Smoluchowski's equation we refer to the literature. (2'3) 

Many authors have noted (4 13) for various special choices of the rate 
constants K(i, j)  that the cluster size distribution ck(t) approaches a scale- 
invariant form in the scaling limit (S), where the mean cluster size s(t) 
diverges: s(t) --* 0% and k --* 0% with the scaling argument x =-k/s(t) kept 
fixed: 

ok(t) s s(t)_,, ~o(k/s(t)) (1.2) 

Thus, in the scaling limit, ck(t) becomes independent of the details of the 
initial distribution. In this paper we calculate the time dependence of the 
mean cluster size s(t), and we study the shape of the scaling function ~p(x) 
for different classes of coagulation rates K(i, j). 

Since most kernels K(i, j)  used in the literature (see, e.g., Ref. 3) are 
homogeneous functions of their arguments, at least for large cluster sizes i 
and j, we restrict ourselves to such kernels, and characterize K(i, j)  by the 
exponents # and v, which describe its i a n d j  dependence ifj>>i (or i~>j): 

K(ai, aj) = aJ'K( i, j)  = a~K(j, i) (1.3a) 

K(i , j )~ i~ j  v (j>>i;2=l~+V) (1.3b) 

We distinguish kernels with /~>0 (class I), # = 0  (class II), and g < 0  
(class III). Moreover, we impose the physical restriction v ~  1, since the 
reaction rate jv of a large j-mer (i.e., j ~> i) should not increase faster than its 
volume, and similarly 2~<2, since for clusters of equal size, K ( j , j ) =  
j~K(1, 1) should not increase faster than f .  

Furthermore, within the class of homogeneous kernels (1.3), we dis- 
tinguish nongeIling models, where the mean cluster size s(t) remains finite 
for all times t < 0% and gelling models, where a gelation transition, charac- 
terized by a divergence of s(t), occurs at a finite time to, the gelpoint. Thus, 
scaling behavior, which is observed as s(t)---, oe, refers to nongelling 
systems at large times (t--* oe), or to gelling systems in the limit t ~ to. 
Which systems gel and which systems do not will be the subject of Sec- 
tion 2. 
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The existence of scaling solutions of Smoluchowski's equation may be 
seen as follows. Since the scaling limit refers to large clusters containing 
many monomeric units, it is appropriate to treat the cluster size k as a 
continuous variable. The continuous analog of Eq. (1.1) is 

8c (k, t )=  1 f~ 8t ~ dl K(I, k -  l) c(t, t) c ( k -  l, t) 

-- c(k, t) dlK(k, l) c(l, t) (1.4) 

Substitution of the scaling Ansatz (1.2) into Eq.(1.4) shows that 
Smoluchowski's equation admits exact solutions of scaling or similarity 
form, satisfying 

- w('r'o(x) + x~o'(x)) 

1 x l "  

fo dy K(y, x - y )  ~p(y) q ~ ( x - y ) -  q~(x) Jo dy K(x, y) q~(y) (1.5a) 

= ws ;+2-~' (1.5b) 

Here w is a separation constant for the x and t dependence. A more careful 
derivation of the scaling equations (1.5a), (1.5b) will be given in Section 3. 
We remark that the reason Smoluchowski's equation (1.5) admits 
similarity solutions is that (1.5) is invariant under a semigroup of similarity 
transformations (see, e.g., Ref. 8). 

This paper is organized as follows. In Section 2 we classify the rate 
constants corresponding to gelling or nongelling systems. In Section 3 we 
derive equations for the mean cluster size s(t) and for the scaling function 
~0(x). The structure of ~0(x) is studied in Section 4 for nongelling models 
and in Section 5 for gelling models. Section 6 is devoted to a special class of 
nongelling systems, not considered in Section 4. Finally, we summarize and 
discuss our results in Section 7. Certain technical details are given in 
Appendices A and B. 

2. CLASSIFICATION OF GELLING AND 
NONGELLING MODELS 

The gelation transition, which occurs in gelling systems at the 
gelpoint, is characterized by a divergence of the mean cluster size s(t), and 
by the onset of a mass flow from the finite-size clusters (sol) to clusters of 
infinite size (gel). Here, we determine which coagulation kernels allow for 
such a mass flow, and we study the structure of postgel solutions, i.e., 
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solutions of Eq. (1.1) for t < to. The arguments presented in this section are 
the generalization to homogeneous kernels of certain results in Refs. 7 and 
8. In these references one considers the product kernel Ko.= i~j ~ (with 
co~< 1), which is contained in (1.3a), (1.3b) as a special case. 

In order to study the possibility of gelling solutions, we consider the 
mass flow 

k 

j = l  

from the clusters of size j 4 k to the clusters of size j > k: 

---/1;/(k)(t) = - - ~  j~ j=  ~ iK(i,j) c~cj (2.1) 
j = l  i = 1  j = k  i + 1  

Equation (2.1) is equivalent to Eq. (1.1), and may be derived by multi- 
plying both sides of (1.1) with k, summing over k from 1 to /, and 
relabeling the indices k ~ j  and l ~ k .  Equation (2.1) shows that if ck(t) 
vanishes sufficiently rapidly as k ~ o% then 

/~/(~)(t)= lim 3;/~k)(t)=0 
k-~oo  

and one finds that Ml(t), the total mass contained in finite-size clusters (sol 
mass), is constant: 

M l ( t ) =  ~ kck(t)=const= 1 (2.2) 
k = l  

The constant in (2.2) may be set equal to unity by an appropriate choice of 
the unit of volume. Equation (2.2) applies to nongelling systems, and to 
gelling systems if t < to. In these cases ck(t) decays exponentially rapidly as 
a function of k. (14'15) 

Gelling solutions, for which the mass flow 

X/(~)(t)= lim /f/(k)(t) 
k ~ c o  

is finite and nonvanishing, are possible only if ck(t) decays sufficiently 
slowly (algebraically) as a function of k: 

ck( t )~B(t )k  -~ (k-~ oo) (2.3) 

Substitution of the Ansatz (2.3) into Eq. (2.1) shows that for k ~ ~ :  

- )Q(~)( t )  ~ [B(t)]  2 k3+;'-2~J('r) (k -~ oo) (2.4a) 
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Here J(r) is defined as 

J ( r )  = dx  dy x K ( x ,  y ) ( x y )  ~ (2.4b) 
1 - - x  

and depends on the parameter r. The lhs of Eq. (2.4a) can only be finite 
and nonvanishing for all times past the gelpoint if the rhs is independent of 
k as k ~ 0% i.e., if 

-c = (2 + 3)/2 (2.5a) 

The possibility of divergence of the rhs of Eq. (2.4a) is physically only 
acceptable at one instant of time, the gelpoint. Since we are looking for 
solutions for all t > to, I-~/~)(t)] must be finite, and so is the rhs of (2.4a). 
It follows from (2.4a) that the prefactor B( t )  is related to the mass flow 
-Ml ( t )  as 

B(t )=  [ - - M l ( t ) / J ( z ) ]  1/2 (t>~tc) (2.55) 

Thus, for t ~> tc the conservation law (2.2) is replaced by 

Ml( t  ) + G(t )  = 1 (2.6) 

where Ml( t  ) and G(t )  are respectively the sol and gel mass fractions. 
Equation (2.3) with (2.5) is an acceptable solution provided certain 

consistency requirements are satisfied. The first requirement is that the sol 
mass M l ( t ) = ~ f f =  I kck( t )  should be finite for t >  to, implying ~ >2,  or 
2 > 1 due to (2.5a). Second, the convergence of the integral (2.4b) imposes 
the restriction 

l + v < r < 2 + #  (2.7) 

For 2 > 1, v ~< 1, and ~ as in (2.5a), the condition (2.7) is always met. 
This shows the occurrence (or absence) of a gelation transition for 
homogeneous kernels (1.3) with 2 > 1 (or 2 ~< 1). 

How to determine the value of the pre-gel exponent r' in (1.2) for 
gelling models? We start from the scaling form (1.2) in gelling systems, and 
we impose two requirements. First, we require that at the gelpoint ck(tc) is 
finite and nonvanishing. This can only happen if, for small x, q)(x)~ B x  -~ 
with c~ = r', since in this case 

lim ck(t)  ~ s ~'B(k/s) ~ ,,~ B k  ~' (k  >> 1 ) 
t~fc 

(2.8) 

Second we assume that for large k the prediction (2.3) from the postgel 
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solution is also valid at the gelpoint t c. Combination of (2.3), (2.5), and 
(2.8) then gives the desired value of the exponent ~': 

v ' = r =  (2+3) /2  (2.9) 

In addition we find that the mass flux at the gelpoint is related to the 
prefactor B in the scaling function: /l;/(tc)= -B2j('c). We remark that the 
arguments leading to Eqs. (2.8) and (2.9) are not rigorous. The reason is 
that pre- and postgel results (1.2) and (2.3) are valid in the scaling limit 
and in the limit k ~ 0% respectively. They need not be valid in the limit 
t --* to, with k ~> 1 fixed, where they are applied. 

Next we discuss nongelling models. It has been proved by White (16) 
that a gelation transition does not occur if the reaction rate K(i, j)  can be 
bounded from above by ( i+j ) .  Thus, gelation does not occur for any 
model with 2 ~ 1, since in this case there exists some constant C < oo such 
that 

K(i, j)  <~ C ( i + j )  (2.10) 

For kernels in classes I and II (/~ ~> 0) this is obvious, since K(i, j)  = (i + j)~ 
K(y, 1 -  y), with y = i/(i + j), and K(y, 1 - y )  is bounded for all y e [0, 1 ]. 
In class III (# < 0), the kernel K(i, j )  can be bounded by (iv+ f )  due to 
(1.3b). This in turn implies (2.10). In summary: the occurrence of a gelation 
transition i s  determined only by the degree of homogeneity 2 of the 
coagulation kernel K(i, j): gelation occurs if Z > 1; it is absent for 2 ~< 1. 

The value of the exponent ~' in nongelling systems (2 ~ 1) is deter- 
mined by the normalization (2.2) of the sol mass. Substitution of the 
scaling form (1.2) into Eq. (2.2) shows that (2.2) imposes 

1 = M ~ ( t ) ~ s  2-~' dxx~o(x) [s(t) --* oo] (2.11) 

Thus, necessarily, 

v' = 2  (2.12) 

As a consequence, the first moment of the scaling function is normalized to 
unity, p~ = 1, where in general the moments p,  of ~0(x) are defined by 

p~ = dx x~cp(x) (2.13) 

In the derivation of (2.12) it has been assumed that all mass is contained in 
the sealing regime, i.e., that the integral Pl converges. Thus, for nongelling 
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systems the condition p~ < ~  serves as a consistency requirement on 
possible scaling solutions ~0(x). For gelling systems, where for small x, ~0(x) 
is given by q~(x)~ Bx  -~, with ~ > 2, this condition is certainly not fulfilled. 
In this case the mass contained in the scaling region k/s(t)>~ ~ (with e > 0 
fixed) vanishes as s(t) 2- ~ --* 0 as s(t)  ~ co. 

3. DERIVATION OF AN EQUATION 
FOR THE SCALING FUNCTION 

In Section 3.1 we derive, directly from Smoluchowski's equation (l.1), 
a nonlinear integrodifferential equation for the scaling function q~(x). In 
our analysis it is often more convenient to use an equivalent nonlinear 
integral equation for q~(x), to be derived in Section 3.2. The exponent r', 
which has been defined in (1.2), is left unspecified here, so that our results 
are applicable for gelling and nongelling systems, where v '=  (2 + 3)/2 and 
r ' =  2, respectively (see Section 2). 

3.1. An Integrodifferential Equation for q~(x) 

To obtain an equation for the  scaling function ~0(x), we insert the 
scaling hypothesis (1.2) into Eq. (1.1), where terms involving cluster sizes i 
much smaller than k = xs(t) ,  i.e., ilk < e ~ 1, are treated separately: 

- Er'~o(x) + x~o ' (x ) ]  i s - ~ ' -  

I ~  (1--e)k 
= s -2~" ~ K(i, k -  i) q~(i/s) q~((k - i)/s) 

i =  ek  

j = ek 

~k 
+ s  -~' ~ [ K ( i , k - i )  c p ( ( k - i ) / s ) - K ( i , k ) q ~ ( k / s ) ]  e i (3.1) 

i = l  

For large s, the first two terms in the rhs of (3.1) may be approximated by 
an integral over y = i/s(t) if we use the homogeneity property (1.3a) of the 
kernel K(i, j).  The last two terms in the rhs of (3.1) may be calculated with 
the help of (1.3b), i.e., 

i ~ [ ( k _ i )  v ~o( (k_ i ) / s )_kV~o(k / s ) ]  ~_ _ i~+l s  ~ ~ d ~xx [x~cp(x)] (3.2) 
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Insertion of (3.2) into (3.1) shows that for large k and s, with k/s(t) fixed, 
Eq. (3.1) reduces to 

- -  (T,' ~O "~- X~O t )  SS z ' - 2 -  2 

1 ((1-~)x 
=2 3~ dy K(y, x -  y) qg(y) q~(x- y) 

oo ~k 

-q~(x)f~ dyK(x ,y )~o(y ) - s  *'-u 2(x~q~)' ~ i"+lci (3.3) 
x i = 1  

with 0 < e ~ 1 fixed. 
As a next step, we show that for s(t) ~ ~,  the third term in the rhs of 

(3.3) approaches a constant independent of t, which vanishes upon taking 
the limit e ~ 0: 

~k 

f g~(t)=--s ~'-~-2 ~ iu+lci --+ dyyl+"q~(y) ( s ~ m )  (3.4) 
i = 1  

To see this, we assume the opposite, namely that g~(t) diverges as s ~ m. 
This could happen if the rhs of Eq. (3.4) diverges at its lower boundary. 
Other possibilities, such as g~(t)~O, are excluded, since g~(t) can be 
bounded from below as s ~ m by the contribution from i values with 
ak/2 < i <~ ~k: 

: x  

g~(t)>~ dy yl+~q~(y)>O 
x/2  

If g~(t) diverges as s ~ ~ ,  then Eq. (3.3) reduces to 

with 

(z'tp +xqg') ~s ~'-~-2 ~ g~(t)(xVtp) ' Is(t) ~ ~ ]  (3.5a) 

g~(t)~s ~' U-2M,+u(t) 

In the derivation of (3.5b) we have replaced ~k__ i,+lCi by 1 

Ml+u(t) - i il+~ci(t) 
i = l  

(3.5b) 

~ws~Ml+~ ( s~  ~ )  (3.6a) 

This is allowed since i values with i > ek give only a constant contribution 
to g~(t), which is negligible as s ~ ~ .  

Separation of the x and t dependence in Eq. (3.5) gives first an 
equation for the time dependence of the mean cluster size: 
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The separation constant w in (3.6a) is positive, since the mean cluster size 
increases as a function of time. Second, we find an equation for the scaling 
function q)(x): 

w(r'~o + x~o') = (xVq~) ' 

Equation (3.6b) may readily be integrated. The result is 

~~ x-V exp [ w ( r ' -  v) Ix d y / ( y v -  wy) ~o 

(3.6b) 

(3.7) 

where x0 is some arbitrary integration constant. The function (p(x) in (3.7) 
has a singularity at the point xs=  w 1/(v i), with q)(x)--* oe as x--, xs. Thus, 
q~(x) is not acceptable as a scaling function, and we conclude that the 
assumption that g~(t) diverges as s ~ oo is incorrect. This implies that for 
large s(t), g~(t) converges to a constant, as indicated in (3.4). This constant 
vanishes in the limit e ~ 0. 

Consider again Eq. (3.3). As we have seen, the third term on the right 
vanishes in the limit s(t) ~ oe, e ~ O. As a consequence, the x and t depen- 
dences of (3.3) are separated, so that for some finite constant w > 0  it 
should hold that 

SS z ' - ) ' -  2 ~ W 

Furthermore, we find a nonlinear integrodifferential 
scaling function ~0(x): 

(3.8a) 

equation for the 

I |  fSl ~)x -- W(z'q~ + Xrp') = lim dy K(y, x - y) ~o(y) q)(x - y) 
~ ~ 0 -2 x 

S; ] - q~(x) dy K(x, y) ~o(y) (3.8b) 
x 

Equations (3.8a), (3.8b) give the main result of this subsection. 
The e limit in this equation requires some comments. If rp(x) vanishes 

as x ~ 0, the limit s $ 0 of the separate terms does exist. We can set e = 0 in 
Eq. (3.8b) and obtain a nonlinear integrodifferential equation for q)(x), as 
already derived by Friedlander et al/4 6): 

-- w('r'~o + x~o') = ~ d y K ( y , x - y )  cp(y)q~(x-y)  

- ~o(x) I? ay X(x, y) ~o(y) (3.9) 

822/50/1-2-20 
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In cases where ~o(x) behaves algebraically as x+0,  we use Eq. (1.3) to 
analyze the smaU-x behavior of the terms on the rhs of (3.8b). The e limit 
in the separate terms only exists if 

z < 1 +/~ (3.10a) 

but for �9 values in the range 

1 + # < z < 2 + #  (3,10b) 

the separate terms contain cancelling infinities and only the e limit of the 
complete rhs of Eq. (3.8b) exists. This makes Eq. (3.8b) rather awkward for 
analytic and numerical analysis. In the next subsection we therefore derive 
a different representation of (3.8b), which is free of cancelling infinities. 

Equation (3.8b) has the following invariance properties. Let ~0(x) be 
the solution of (3.8b) for some constant w > 0. Then for all a, b > 0, 

(o(s = b~o(~/a) (3.11a) 

is also a solution of (3.8b), corresponding to 

ff; = bal + ~w (3.11b) 

Thus, there exists a two-parameter family of scaling solutions q5(s The 
two parameters a and b determine the scale of the x and the q~ axes. 

The values of the parameters a and b are fixed as follows. First we 
discuss nongelling systems. In this case the choice of the unit of volume 
determines the value of the first moment of the scaling function: 

fo~dX x~o(x) = = 1 (3.12) P~ 

We recall that we have chosen Pl = 1 throughout this paper. Equation 
(3.12) imposes a first condition on the values of a and b. A second con- 
dition is obtained if we give a precise meaning to the words "mean cluster 
size." Different definitions of s(t)  correspond to different values of a and b. 
As an example, consider the following three definitions of the mean cluster 
size: 

(i) s(t) = M l ( t ) / M o ( t )  

(ii) s ( t ) = M z ( t ) / M l ( t )  (3.13a) 

(iii) s ( t ) = M 3 ( t ) / M z ( t )  

Insertion of the scaling form (1.2) with T ' = 2  into (3.13a) shows that 
m~( t ) /Mo( t )  ~ s(t) Pl/Po as s(t) ~ ~ .  Similarly, M2/M1 ~ s(t) P2/Pl and 
M 3 / M 2 ~ s ( t ) p 3 / P 2 .  Thus, the definitions (3.13a) impose upon cp(x) the 
following restrictions: 

(i) p l - -  Po, (ii) P2 =P~,  (iii) P3 = P2 (3.13b) 
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The two conditions (3.12) and (3.13b) fix the values of the parameters a 
and b. It has been tacitly assumed that all moments p~ are finite. In case the 
lower moments, such as Po, diverge (see Section4.4), higher moments 
should be used to obtain a consistent description of the scaling laws. 
Convergence of p~ is determined by the small-x behavior of r which is 
discussed in Section 4.4. In gelling systems, one relation between a and b is 
obtained if we give a precise definition of "mean cluster size." For gelling 
models Eq. (3.12) does not apply, since p~ = 0o in this case. 

A different representation of the ~p(x) equation is obtained if we 
consider the Mellin transform of (3.8b). For all values of ~ with p~ < 0% 
multiplication of (3.8b) with x ~ and integration over all x yields 

'fo o fo w ( l + ~ - - v ' ) p ~ = ~  dx dyK(x,y)qo(x)qa(y)[(x+ y ) ~ - x ~ - y  ~] 

(3.14) 

It must be stressed that Eq. (3.14), in contrast to the assertions in Ref. 4-6, 
does not contain new information about ~0(x). We use it mainly to derive 
expressions for w in terms of the moments p~ for coagulation kernels 
K(x, y) of a simple mathematical structure. 

3.2. An Integral  Equation for  q~(x) 

In this subsection we transform Eq. (3.8b) into an integral equation, 
the right-hand side of which is free of cancelling infinities and, furthermore, 
is strictly positive. This can be achieved by starting from (2.1). We first 
transform its lhs using mass conservation (2.2) and the scaling hypothesis 
(1.2): 

k 

j = l  j = k + l  j = k + l  

;/ = - s  1-~'~ dy [r'yp(y)+ yZV(y)]  (3.15a) 

where x=k/s(t). In deriving (3.15a) we have assumed that the integral 
S2 dy y~o(y) converges at its upper boundary. Similarly, we find for the rhs 
of (2.1) 

k 

s -2~' ~, ~ iK(i, j) q)(i/s) q~(j/s) 
i = 1  j ~ k - - i + l  

= s  3+~'-2"' du dvuK(u,v)~p(u)p(v) (3.15b) 
x 
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Combination of (3.15a), (3.15b) and separation of the x and t dependences 
gives Eq. (3.8a) for s(t), and for the scaling function: 

- w  dy('c'yq~+ y2q/)= du dvuK(u,v) q)(u)q~(v) (3.16) 
u 

Equation (3.16) can also be derived by multiplication of Eq. (3.8b) with x, 
integration over x from z to ~ ,  and relabeling z---, x. 

The advantage of Eq. (3.16) over (3.8b) is that cancelling infinities are 
absent in (3.16), that the rhs is strictly positive, and that spurious 
solutions, i.e., solutions with Pi = ~ ,  are automatically excluded, as we 
shall see in Section 4. Multiplication of (3.16) with x ~ and integration over 
all x gives again (3.14). 

For nongelling systems, where r' = 2, the integrand in the lhs of (3.16) 
is a complete derivative, and (3.16) transforms into the following nonlinear 
integral equation: 

wx2qg(x) = du dv uK(u, v) qg(u) q~(v) 
- - u  

(3.17) 

provided that ~0(x) satisfies the boundary condition xacp(x) --* 0 as x ~ ~ .  
We want to point out that the boundary condition is a direct consequence 
of mass conservation. If this conservation law had not been used in the 

W x derivation of (3.16), then the lhs would have been replaced by So dy (...). 
In the nongelling case (z '=  2), this equation can also be integrated to give 
(3.17), provided q~(x) satisfies the different boundary condition x2cp(x)~ 0 
as x ~ 0. We return to this point in Section 4 in relation to an unphysical 
exact solution of (3.8b) that satisfies the latter, but not the former boun- 
dary condition. 

4. NONGELLING SYSTEMS WITH h < l  

This section is organized as follows. First we make the results of the 
previous sections explicit for nongelling systems with 2 < 1. The nongelling 
systems with Z-- 1 are a borderline case, treated separately in Section 6. In 
Section 4.1 we give some known exact results. Next we determine the 
large-x and the small-x behavior of the scaling function q~(x). The large-x 
behavior of q~(x) is calculated in Section 4.2. In Section 4.3 we sketch the 
method that will be used to investigate the small-x behavior of q~(x). This 
leading behavior of q~(x) as x + 0 in classes I-III is given in Section 4.4. In 
Sections 4.5 and 4.6 we calculate correction terms to the leading small-x 
behavior in classes II and III, respectively. 
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We start with a specification of some general results for nongelling 
systems, where the scaling function, according to Section 2, has the form 

ek(t) s i s ( t ) ]_2  q)(k/s(t)) (4.1) 

Since we have set the mass density equal to unity, it follows from (4.1) that 
Pl = 1. This fixes one of the two scale parameters a and b [see (3.11)]. For  
~ '=  2 Eq. (3.8a) gives the time development of the mean cluster size as 

~s - ~  = w; s ( t )  = [ C +  (1 - ,~) w t ]  ~ (4.2) 

where the exponent z has the value 1 / ( 1 - 2 ) .  The scaling function cp(x) 
satisfies Eq. (3.8b) with r ' - - 2 :  

- w(2~o + x r  --lim K(y,  x - y )  q~(y) q~(x - y)  
e~.O x 

- r dy K(x, y) O(Y) (4.3) 
X 

or, alternatively, Eq. (3.17). We recall that, in the derivation of (3.17), it 
has been assumed that x2~o(x )~  0 as x ~ o% which is to some extent 
equivalent to the condition that Pl converges at its upper boundary. 

4.1. Exact Results 

For general homogeneous kernels, Eq. (4.3) or (3.17) cannot be solved 
exactly. Only in special nongelling models, such as K(x,  y ) =  1 and 
K(x,  y )  = x + y, is the solution of (4.3), (3.17) known in closed form. For 
K(x,  y) = 1, the solution for Pl = 1 is q)(x) = ( 2 w )  2 e -2wx. The parameter w 
is fixed if we Choose one particular definition of "mean cluster size." For  
example, if we choose s ( t ) =  M 2 ( t ) / M l ( t ) ,  as in (3.13), part (ii), then w = 1. 
For the kernel K(x,  y )  = x + y, which is a special case with 2 = 1 (see Sec- 
tion 6), one finds q~(x) = (2~)-  ~/2 x-3/2e-X/2, where the constants have also 
been fixed by choosing (3.13), part (ii) as a definition for s(t). [Note  that 
w = 2 p l  due to (3.14) for e = 2 . ]  Furthermore, exact but unphysical 
solutions of the form q~(x) = B x -  1 - ~. are found for all nongelling models of 
class I. These unphysical solutions violate the boundary condition 
x2~o(x) --* 0 as x --* ~ ,  so that in this case Pl = oo. For kernels other than 
K(x,  y) = 1 and K(x,  y )  = x + y, one cannot calculate the scaling function 
cp(x) exactly. For  general nongelling models, therefore, the large- and the 
small-x behavior of q~(x) must be calculated self-consistently. 
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4.2. The Large-x Behavior 

First, we consider the large-x behavior of the scaling function q~(x). It 
is known (14'15) that for cluster sizes much larger than the mean cluster size, 
the distribution Ok(t) in (1.1) falls off exponentially: 

ck(t) "~ a~k-~ kz (k ~ oo ) (4.4a) 

with z < O, ~ > O, and (provided v < 1) 

0 = 2 ;  a -  1 1 f~ =~ dy K(y, 1 - y ) [ y ( 1 - y ) ] - ~  (4.4b) 

As far as the large-x behavior is concerned, we restrict ourselves to 
exponents v < 1. For kernels with v = 1 the results are more complicated (~s) 
and will not be considered here. Due to (4.4a), (4.4b) it seems reasonable 
to assume that ~0(x) also decays exponentially as x ~ ~ ,  namely 

q~(x )~Ax -~  -6x (x ~ oo) (4.5) 

The Ansatz (4.5) is supported by the results for the exactly solvable models 
mentioned above, where 0 = 0  for K(x, y ) =  1 and 0 =  3/2 for K(x, y ) =  
x + y .  

Insertion of the Ansatz (4.5) into Eq. (3.17) shows that 

wxZq~(x) ~ (A/6) du u~p(u) K(u, x - u)(x - u) -~  e -6(x - u) 

fo ~ ( A 2 / 6 ) e  - ~  d u K ( u , x - u )  u l - ~ 1 7 6  

f' ~(A2/2(~)x2+)o-2Oe Z,x dug(u ,  1 - u ) [ u ( l - u ) ]  o (x--*oo) 
oO 

(4.6) 

Comparison of the various factors on the lhs and rhs shows that the Ansatz 
(4.5) is consistent only if 

0 = 2 (4.7a) 

and 

w 6 / A = ~  dy K(y, 1 -  y ) [ y ( 1 - -  y)]  -x (4.7b) 
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The integral in (4.7b) converges if v < 1 [see (1.3)]. Thus, we have found 
the asymptotic (x --* oo) behavior for all nongelling models of classes I-III, 
with the restriction that v < 1. 

One may also investigate possible solutions of Eq. (3.13) with non- 
exponential large-x behavior, such as algebraic functions, q)(x),-~ Ax -~ or 
stretched exponential behavior, ~o(x) ~ Ax -~ e x p ( - ~ x  ~) with 0 < fl < 1. 
Substitution of these trial functions into Eq. (4.3), or (3.17) shows that such 
behavior is inconsistent. More precisely, one only finds consistent solutions 
of the form q~(x),,~Ax-l-); and these solutions are unphysical since 
pl = oo. We further remark that the asymptotic behavior (4.5), (4.7a), 
(4.7b) agrees with the large-k behavior (4.4a), (4.4b) if we identify z(t)= 
-g)/s(t). This may be seen with the help of Eq. (4.2) for ~(t). The constants 
6 and A play the role of the parameters a and b in the general solution 
~(2) = brp(~/a). 

4.3. Smal l -x  Behavior: Restr ict ions on Admi t ted  Solut ions 

In this subsection we introduce the method used to investigate the 
small-x behavior of q)(x). The advantage of this method is that the small-x 
behavior of q~(x) may be studied systematically. As a result we find an 
explicit asymptotic form for q)(x) (x J,0). This asymptotic form is 
qualitatively different in classes I-III. 

The essential point in our arguments is that we restrict the class of 
allowed solutions to functions satisfying certain smoothness criteria, which 
are formulated in terms of the following ratio: 

f (x ,  y) = (p(xy)/(p(x) (4.8) 

The reason is that, for large classes of functions ~0(x), the behavior of 
f (x ,  y) is particularly simple as x J, 0. As we shall see in Section 4.3, once 
f (x,  y) is known for x ~ 0, one may determine the detailed behavior of ~0(x) 
from Eq. (3.13). We restrict our study to the large class of functions ~o(x) 
that are smooth in the sense that f (x ,  y) converges to a limit as x J, 0, i.e., 
we assume that there exists a function f ( y )  such that 

lim f (x ,  y ) = f ( y ) ;  f ( 1 )  = 1 (4.9) 
x,~O 

In order to clarify the restriction imposed by (4.9), we give a few examples. 
The class of functions (p(x) with the property (4.9) includes, for instance, 
algebraic behavior, dressed with possible logarithmic factors, i.e., q~(x)~ 
x - ~ ( - l o g x )  ~ as x$0,  with ~ and fl arbitrary, or functions that vanish 
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exponentially rapidly as x J,0, such as r  Excluded are 
rapidly oscillating functions, such as (0(x)~ x-~[1  + sin(l/x)].  

We distinguish the two possibilities: f ' ( 1 )  is finite and f ' ( 1 ) =  oo. If 
f ' (1 )  is finite, differentiation of (4.8) and (4.9) with respect to y gives 

f ' (y )  = lim[xq)'(xy)/q~(x) ] (4.10a) 
x$O 

=f ' (1) f (y) /y  (4.10b) 

Integration of Eq. (4.10b) shows that f (y )  can only be a purely algebraic 
function, i.e., 

f ( y ) = y - ~  (4.11) 

where ~ -  - f ' ( 1 ) .  The integration constant in (4.11) has been fixed by the 
requirement that f ( 1 ) =  1. The alternative case, where z = - i f ( I ) =  -0% is 
more complicated, and will be discussed in Section 4.4. 

The possible behavior of the scaling function r admitted by the 
criteria (4.9) or (4.11) can be determined from (4.10a). If we set y = 1 in 
(4.10a), this equation can be integrated to yield 

log q)(x) ~ - ~  log x ( x i 0 )  (4.12) 

Thus, restricting the class of a l lowedf (y)  to strictly algebraic functions still 
admits scaling functions that are algebraic and dressed with additional 
factors, such as ( - l o g  x) a, that vary more slowly than any power of x. 

4.4. The Leading Small-x Behavior (Classes I - I I I )  

First we determine the small-x behavior in class I ( / /> 0). For this 
purpose we rescale the integral on the right of (3.13) by a factor x. The 
result may be expressed in terms of the function f (x ,  y), defined in (4.8), as 
follows: 

;o' WX2Q)(X)=X3+'~[q)(x)]  2 dy dz yK(y, z) f(x,  y) f(x, z) 
i y 

(4.13) 

We first look for solutions satisfying (4.11) with r finite, and require that 
the integral in (4.13) converges as x l 0 ,  i.e., 

1 + v < ' r  < 2 + / ~  (4.14) 

In this case Eq. (4.13) reduces for small x to 

q)(x),,~Bx -~ (x.~O), r = l + 2 ,  B=w/J(l+)~) (4.15) 
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The definition of J( t )  is given in (2.4b). Consistency requires that the value 
of t found in (4.15) satisfies the inequalities (4.14). In all nongelling systems 
of class I these conditions are fulfilled since/~ > 0 and 2 =/~ + v < 1. Thus, 
Eq. (4.15) gives the dominant small-x behavior of q)(x). 

Next we look for small-x solutions with f ( x ,  y) --* y -  ~ and 

~< 1 + v (4.16) 

and obtain the small-x behavior in classes II and III. In this case, we split 
off the dominant contribution in the rhs of (3.17) as follows: 

fo ~o~ dzz~(z)+ R~(x) wx2ql(x) = dy yl +,Uq)(y) Jx-y (4.17a) 

The remainder Rl(X) in (4.17a) is defined by 

R~(x) - dy ye(y) dz q~(z)[K(y, z ) -  y 'z  v] 
--y (4.17b) 

and has the property R I ( X  ) = O[X2(O(X)] as x{0.  
As a next step, we argue that the vth moment p~, defined in (2.13), is 

finite, i.e., 

hv(x) - dz zko(z) 

converges to pv < oo as x { 0. In order to see that p~ is indeed finite, we 
assume the opposite, namely that h~.(x) diverges as x ~ 0. This could happen 
only if the exponent z in (4.11) or (4.12) is equal to 1 + v. In this case h~(x) 
diverges more slowly than any (negative) power of x, i.e., h~(xy)/hv(x) - ,  1 
as x+0 for every fixed value of y > 0 .  As a consequence, Eq. (4.17) 
reduces to 

wx2q~(x)~x~+~e(x)&(x) dy y~+. -~ (x,LO) (4.18) 

Since by(x) diverges more slowly than any power of x, Eq. (4.18) is 
obviously inconsistent for all values of kt. We conclude that the assumption 
of a divergence of h~(x) as x $ 0  leads to a contradiction. It follows that 
necessarily Pv = h~(0) is finite. As a consequence, Eq. (4.17) simplifies to 

wx2q~(x) = P~ fo dy yl +"~o(y) + R2(x) (4.19a) 
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The remainder R2(x) is now given by 

Rz(x) = R1(x) - f: dy yl+ ,q~(y) f] -y dz zVq~(z) (4.19b) 

and has the property R2(x)= o[x2q~(x)] as x+0. 
The dominant small-x behavior of ~o(x) in classes II and III may now 

be obtained as follows. Dividing Eq. (4.19a) by wx2q)(x) yields 

l=w-lpvx~I~dyyl+"f(x ,y)+o(1 ) (x J,0) (4.20) 

Recall that the constant w is strictly positive; cf. (3.8a). Before addressing 
classes II and III, we note that in class I (where # > 0 )  the rhs of (4.20) 
vanishes as x ,~ 0 and consistent solutions with ~ ~< 1 + v [see (4.16)] do not 
exist. 

In class II, where # = 0 ,  it follows from (4.20) that necessarily 
f(x, y ) ~  y-~ as x J,0, with T < oe in order that the rhs of (4.20) converges 
to a positive constant. Substitution into (4.20) of the relation (4.11) and 
calculation of the integral shows that T = 2 -pz/w. Thus, in class II, we find 
that q~(x) falls off algebraically, with an exponent r that is related to 
integrals over ~0(x): 

log ~o(x) ~ - ~  log x (x + 0) (4.21a) 

= 2 - p)jw (4.21b) 

Thus, we find an expression for the ~ exponent in terms of the moment p~ 
of the scaling function [defined in (2.13)] and the separation constant w 
[see (3.8a), (3.8b)]. It immediately follows from (3.11a), (3.11b) that the 
value (4.21b) for z is independent of the parameters a and b, i.e., indepen- 
dent of the chosen scales of the x and ~o axes. The correction terms to the 
leading behavior (4.21a), (4.21b) are calculated in Section 4.5. 

As a simple illustration of this result, we consider the kernel K(x, y)= 
x + y with degree of homogeneity 2 = 1. We use the Mellin transform (3.14) 
with r '  = 2 and e = 2 to find that w = 2pl. Since Pl = P). in this example, we 
deduce from (4.21b) that r = 3/2, in agreement with the explicit solution, 
already discussed in Section 4.1. 

Finally, if # < 0 (class III), the prefactor x ~ in (4.20) diverges as x ~. 0. 
We conclude that within class III no solutions satisfying (4.9) with r = 
- f ' ( 1 ) = f i n i t e  exist. We therefore study the only possibility left, r =  
- f ' ( 1  ) =  - oo ,  so that the scaling function ~0(x) vanishes more rapidly than 
any power of x. In this case, the integral equation (4.19a) for the small-x 
behavior of ~0(x) in class III can be easily solved by converting it into a 
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differential equation. This can be done by differentiating (4.19a) with 
respect to x, yielding 

wx2~o'(x)-pvx~+~o(x) (xl0) (4.22) 

Integration gives for the dominant behavior in class III as x J. 0 

~o(x)=exp(-pvX-t"t/Ipl  w+ . . .) (x.~O) (4.23) 

The result shows that for all models of class III, q~(x) falls off exponentially 
rapidly as x+ 0. Possible algebraic and constant factors in ~0(x) constitute 
less dominant asymptotic corrections and will be discussed in Section 4.6. 

Thus, we have found the dominant small-x behavior of ~0(x) for the 
nongelling models of class ! with 2 < 1 and for the models of classes II and 
III. The restriction v <  1 in classes II and III that was imposed in 
Section 4.2 does not apply for the small-x behavior of ~0(x). The results of 
Sections 4.3 and 4.4 are valid for all models with 2 < 1 and v ~< 1. 

4.5. Subleading Smal l -x  Behavior (Class I!) 

In the next subsections we try to determine asymptotic corrections to 
the dominant small-x behavior found in Section 4.4. In class I we did not 
succeed in finding its explicit form, or even its analytical structure. We 
return to this point in Section 7. 

In class II we found the leading small-x behavior as ~o(x)__ x ~. The 
exponent T given in (4.21b) is not known explicitly, but consistency 
requirements determine the bound (4.16), namely z ~< 1 + 2, where we used 
the equality 2 = v valid in class II (# = 0) due to (1.3b). 

More details about the asymptotic (x+0) behavior of ~o(x) can be 
obtained if we know the structure of the correction term R2(x) in (4.19b) 
for small x, which in turn requires a more detailed specification of the 
kernel K(x, y) in (4.17b). Suppose K(x, y) has the structure 

K(y,z)=zV+Kly"lz;~-~ ' l+ ...  ( z ~ )  (4.24) 

with/~1 > 0. In this case we distinguish three possibilities for the r exponent 
in (4.21): z~< 1 + 2 - / ~ 1 ,  1 + 2 - # 1 < z <  1 +2,  and z =  1 +2,  which will be 
discussed in this order. 

We first estimate the remainder R2(x) in (4.19b), where the second 
term in the rhs is always of the order of x 3 + ~-2~ as x,L 0. The remaining 
term Rl(x),  defined in (4.17b), contains the integral 

dz q~(z)[K(y, z) - z ~ ] ~ K1 yUl dz q~(z) z ~-~q  (4.25) 
- - y  x - - y  
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Since y is small compared to z, we have approximated K(y, z) in (4.25) by 
(4.24). Thus, if r < 1 + 2 - #1, we find for the rhs of (4.25) K "" ' -  and 1.Y P2--,Ul, 
we have the small-x estimate 

R2(x)'..KIpa_~,, dy y~+~'~(p(y) (x,LO) (4.26) 

If z > 1 + 2 - #1, then both terms in (4.19b) give a contribution of the same 
order, and we find that 

R2(x)~I('c)x3+'~[(p(x)]2 (xJ, O) (4.27a) 

with I(T) given by 

I(~)~ dy y l -~  dzz  ~[K(y, z ) - z  "~] 
y 

~0' 1-- -- dy yl "c f o y  dz z 2-z (4.27b) 

Finally, if " ~ = l + . ~ - - ~ l  , then the factor P).-~I in (4.26) is replaced by 
B log x, with B defined by q0(x)~ Bx -~ as x $ 0. 

With the use of Eqs. (4.26) and (4.27) for R2(x), we may now deter- 
mine the detailed small-x behavior of q~(x). Differentiation of (4.19a) in 
combination with (4.21b) gives an equation for (p(x): 

wx2~o'(x) + wrx~o(x) = R'2(x) (4.28) 

This equation is valid for all x, and can be solved explicitly [at least 
formally, because R2(x) contains the unknown ~o(x)]. The result is 

~o(x)=x -~ B + w  ~ d y S  2R~(y) (4.29a) 

where z is given by Eq. (4.21b). As (4.29a) is an exact transformation of 
(3.17), it also holds for x ~ oe. In this limit the lhs of (4.29a) vanishes 
exponentially due to (4.5), so that the constant B is related to R2(y) as 

O = - w  -1 dy S - 2 R ' z ( y ) =  - w - 1 ( 2 - ~ )  dy y~ 3R2(y ) (4.29b) 

Consistency requires that B in (4.29b) is positive. The correction terms to 
the dominant small-x behavior of q~(x) may readily be calculated from 



Scaling Solutions of Smoluchowski's Coagulation Equation 315 

(4.27a) with the use of (4.25) and (4.26). One finds that for small x, ~0(x) is 
given by 

q)(x)=Bx-~(1 +Klp~_~lxU~/w#a + ...) (~< 1 + 2 - / ~ i )  (4.30a) 

= Bx-~(1 +BK~x u~ logx/w#~ + ...) ( r =  1 + 2 - # ~ )  (4.30b) 

= Bx-*[1 + (3 + 2 - 2"c) BI(z) x ~ +'~- Vw(1 + 2 - r) + - . . ]  

(~> 1 + 2 - / ~ )  (4.30c) 

Finally, we consider possible solutions (p(x) with , =  1 +2.  In the 
derivation of (4.27) and (4.30c) we have assumed that r < 1 + 2 holds, and 
for ~ = 1 + 2, Eq. (4.30c) is obviously incorrect. From Section 4.4 we know 
that in principle solutions with ~ = 1 + 2 could occur, provided that px < oo. 
The convergence of p~ requires that the integration constant B in (4.29a) 
vanishes, i.e., B = 0. Partial integration of the integral in (4.29a) then shows 
that 

Q)(X)-~-w--lx - 1 - 2  X 2 1R2(x)+(1--2 ) dyy  x 2R2(y ) (4.31a) 

For  small x, R2(x) is determined by the second term in (4.19b). 
Qualitatively, this may be seen already in the expression (4.27), valid for 

< l + 2. If we take the limit ~ ~ 1 + 2 in (4.27b), then the second term 
diverges, whereas the first remains finite. Hence 

R2(x)~ - f o d y  y~ +~'q)(y) fo-  Ydz z;~q)(z) 

- ( 1  - 2 )  - I  x2q0(x) fo~ dy y~qg(y) (x.L O) (4.31b) 

In the derivation of (4.31b) we have used that j(x)=-S~ dy yX~o(y) vanishes 
as x ], 0 more slowly than any power of x, so thatj(ux)/j(x)--* 1 as x + 0 for 
all fixed u with 0 < u < 1. Similarly, we used the property (4.11) of q)(x), i.e., 
~o(yx)/q)(x)--*y i-;~ as x~0.  Combination of (4.31a), (4.31b) shows that 
q~(x) is negative as x,L 0, which is contradictory. We conclude that solutions 
with r = 1 + 2 are excluded, i.e., that the exponent ~ in class II satisfies the 
strict inequality ~ < 1 + 2. From the result (4.29) it then follows that for all 
models in class II, the behavior of q~(x) is strictly algebraic as x ~, 0. Within 
the class of slowly varying functions with the property (4.9), all other 
behavior is excluded. 
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4.6. Subleading Smal l -x  Behavior (Class I I I)  

Also here it is possible to determine systematically corrections to the 
dominant small-x behavior. We first consider the (more or less) general 
case. Next we discuss some special examples. 

It is illustrative to start with kernels K(y, z) that can be expanded in a 
power series as z ~ ~ :  

K(y,z)= ~ K,y~"z ~-~~ (z--*~) (4.32) 
n = 0  

with Ko = 1 and #0 = #. Most kernels in the literature have the property 
(4.32). The leading small-x behavior (4.23) in class III implies that, as x J, 0, 
the first term in Eq. (4.3) is exponentially small relative to the second term. 
Thus, if we insert (4.32) into Eq. (4.3), we find that, for small x, ~o(x) 
satisfies the following equation: 

w(2q~+xr ~ K,x~"p~ ~,~ (x{0) (4.33) 
n = 0  

where the correction terms to the rhs of (4.33) are exponentially small. 
Integration of Eq. (4.33) yields for ~0(x) 

~o(x) ~ Cx -2 exp - pa_, ,  (x { 0) (4.34) 

The prefactor C > 0 remains undetermined. If #~ = 0 for some value of n, 
then x"/#n in (4.34) is replaced by log x. 

Next we show that in the limit # 1" 0, the small-x behavior in class III 
crosses over to the known behavior (4.29a), (4.29b) in class II. To do this, 
we give a formal solution for ~0(x) for general coagulation kernels in 
class III. Differentiation of Eq. (4.19a) gives an equation from which ~0(x) 
can be solved in terms of R2(x). The result is 

(4.35) 

The constant factors exp(+_pv/#w) in (4.35) have been inserted for con- 
venience only. Insertion of these factors clearly shows that the expression 
(4.35) for q)(x) in class I l l  reduces to the result (4.29) in class II if the ker- 
nel K(x, y) is modified in such a way that the exponent # vanishes (# T 0). 

For definiteness we consider a kernel of the form (4.32) with g < 0 and 
~1 > 0. In this case, the small-x behavior (4.26) of Ra(x) implies that the 
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integral in (4.35) is convergent. Thus, we find that for small x, (4.35) 
reduces to 

q)(x) ~ B x - 2  exp[(pv/ l~w)(x  u _ 1 )] (x ~ 0) (4.36a) 

with the prefactor B given by 

B = - w  -1 dy R ; ( y )  expl- - (pv/l~w)(y ~ - 1 )] (4.36b) 

If the coagulation kernel (4.32) approaches the kernels of class II, i.e., if 
/* ~" 0, then (4.36) reduces to the leading small-x behavior in (4.29). 

Finally, we consider as an example several model kernels with/~ < 0: 

&(x, y) = (xy)~ 

Kz(x '  Y) = x~ + Y~ (4.37) 

& ( x ,  y) = (x '~ + y~')(x-" + y ~ )  

K4(x, y) = xt'y v -k y'UxV (v > O) 

For # = -1/3,  the kernel K3(x, y )  corresponds to Brownian coagulation. 
The kernels (4.37) all have the form (4.32), so that for small x, ~o(x) is of 
the form (4.34). The constant w in (4.34) can be expressed in terms of the 
moments p~ of ~o(x) with the use of (3.14), where we choose ~ = 0. For the 
kernels K1,K2  one finds, respectively, wl- - (pa)2 /2po ,  w 2 = p u ,  w3= 
(P~+P, ,P- , , ) /Po ,  and w4=p, ,pv /Po  . Insertion of these values into (4.34) 
finally gives for the corresponding asymptotic behavior of cp(x) as x ~. 0 

~pl(X) ~ C1 x -2 exp( 2x~po/#p u) (4.38a) 

q~2(x) ~ C2x  1 exp(x~,Po/ltp~,) (4.38b) 

~o3(x )~C3x-~  e x p ( - x  I~lp_t,/l~[ w3 + xllZlp,u/llz I w3) (4.38c) 

~o4(x) ,-~ C4x  ~ exp( -x-I* ' lpv/ l#[  w4 + x~pJvw4)  (4.38d) 

The exponent 7 in (4.38c) is related to the moments p~ of rp3(x ) as 
= 2p,,p_,, /pow3. 

5. ASYMPTOTIC SOLUTIONS FOR GELLING SYSTEMS ( A > I )  

In gelling systems, where the average cluster size diverges in finite 
time, the scaling Ansatz has the form (1.2) with r ' =  r, i.e., 

ck(t) s s(t) T u,(k/,(t)) (5.1) 
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The "critical" exponent is T = (2 + 3)/2 due to (2.5a). The time dependence 
of s(t) is given by (3.8a), i.e., 

~s ~-~-~  = w; s(t) = [~rw(tc-  t)]  -v~ (5.2) 

where we have introduced the critical exponent a = 1 + 2 - ~  = �89  In 
this section we study the equation for the scaling function (3.16), i.e., 

--W dy ('cyq) -k y2q),) = du dv uK(u, v) q~(u) ~o(v) (5.3) 
X - - U  

The solution of this equation again contains two arbitrary constants, i.e., if 
q)(x) is a solution, then bq)(x/a) is also a solution [see (3.11a), (3 . l ib)] .  

In order to study how the parameters a and b in (3.11) are fixed in 
gelling systems, we consider first the special model K(x,  y ) =  xy, which has 
2 = 2. In this case the exact solution of Eq. (5.3) has in general the form 

q~(x) = B x -  5/2e- x/a (5.4a) 

where the two parameters (B, a) play the role of (b, a) in (3.11). Since in 
the present case the solutions of Smoluchowski's equation for a given initial 
distribution are known exactly, (~7) one can determine how the two 
parameters depend on the initial conditions. The results are the following. 
The parameter a in (5.4a) is determined only by the definition of "mean 
cluster size" and does not depend on the initial conditions. For  instance, 
the choice s(t) = M3( t ) /M2( t  ) or s(t) = m 4 ( t ) / m 3 ( t )  corresponds to a = 2 or 
a = 2/3, respectively. Thus, the choice of s(t) fixes the scale of the x axis. 
The parameter B in (5.4a) is determined by the initial conditions, and is 
independent of the definition of s(t): 

B = { [M2(0)] 312rtM3(O)}m (5.4b) 

The constant w in (5.3) can be calculated from (3.14) for c~ = 2 as w = 2p2 = 
2(art) m B. Thus, w depends on the initial conditions and on the definition 
of s(t). 

For different kernels with 2 > 1 the general solution of (5.3) has the 
form ~o(x) = Bx  ~b(x/a),  with ~(0)  = 1 and B and a arbitrary. The value 
of the parameter a, i.e., the scale of the x axis, is again fixed by the 
definition of s(t). The value of B or of w depends in general on the initial 
conditions. However, the explicit dependence of B (or w) on the initial 
conditions remains undetermined, since the solution of the initial value 
problem (1.1) for general homogeneous kernels is not known. We further 
mention that we cannot fix the constant B by setting Pl = 1, as we did in 
the nongelling case, because here P l = oc. The reason is that only a 
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negligible fraction of the total mass is contained in the scaling region, as 
already discussed at the end of Section 2. 

The large-x behavior of ~o(x) is determined along the same lines as in 
Section 4. For k --* ~ (with t < tc fixed), the cluster size distribution ck(t) 
falls off exponentially. ~14) Hence, we assume that for large x, ~o(x) has the 
form (4.5) also for gelling systems. Substitution of (4.5) into (5.3) leads to 
exactly the same result (4.7a), (4.7b) as for nongelling systems. The reason 
is that the second term in the lhs of (3.8b) is dominant as x ~ ~ in gelling 
and nongelling systems. Thus, the value of r '  is irrelevant for the leading 
asymptotic behavior of ~o(x) as x ~ oo. As an immediate consequence, we 
have that the large-x behavior (4.5) with (4.7a), (4.7b) is also for gelling 
systems, in agreement with the large-k result (4.4). 

The dominant small-x behavior of q~(x) is of the form ~o(x),-~ Bx -~, 
with ~ = (2+ 3)/2. As a consequence, the rhs of Eq. (5.3) converges to a 
positive constant as x$0,  so that (5.3) reduces to 

- w  dy (tyro + y2~o') = BzJ((2 + 3)/2) (5.5) 

with J(z) given in (2.4b). 
Subleading asymptotic corrections can be obtained by assuming that 

corrections to the dominant small-x behavior are of algebraic type: 

with 

~o(x) = x -~ [B  + ~(x)] (5.6a) 

? ( x ) ~ B l x  ~ (x,L 0, e > 0 )  (5.6b) 

From (4.5) it follows that for large x, ?(x)-~ -B .  
The value of ~ can be determined by subtracting (5.5) from (5.3). The 

result is 

fo w ay (~y~o + y~q~') 

;o"S = du dv uK(u, v)[q~(u) ~o(v)- B2(uv)-3] 
x - - u  

= B au dv uK(u, v)(uv)-~[~(u) + ~(v) + B -  17(u) 7(v)] (5.7) 
- - u  

The lhs of Eq. (5.7) can easily be evaluated for small x with the use of the 
Ansatz (5.6a), (5.6b): 

LHS(5.7) ,,~ weB~ dy y~-~+~ (x$ 0) (5.8a) 

822/50/1-2-21 
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The rhs can be evaluated as follows. The quadratic term ?(u)7(v) is 
negligible with respect to ?(v), since ? ( u ) ~  0 as u+0. Moreover, the first 
term in the rhs, corresponding to ?(u), is proportional to x ~, which, 
according to (5.8a), is negligible with respect to the lhs of Eq. (5.7). Thus, 
the dominant contribution comes from the 7(v) term in the rhs of (5.7), 
yielding 

RHS(5.7) ~ B du u 1 - - T  dl) K(u, v) v ~y(v) 
- - u  

~ B  d u u  ~+~'-~ dvvV-~?(v) (x],O) 
Jo  

(5.8b) 

In the derivation of (5.8b) we first replaced the lower bound of the v 
integral by v = 0. The relative error made in this way vanishes as x ~ for 
x+0. The next step is to use the property (1.3b) for K(u, v) with u < v .  
Combination of (5.8a), (5.8b) and differentiation with respect to x finally 
shows that (5.6a), (5.6b) is consistent if 

~ = #  (5.9a) 

and 

B~ = (B/w#) dv v v-  ~?(v) (5.9b) 

Thus, we have determined the first correction to the leading small-x 
behavior. 

We add the following comment. In principle it cannot be excluded 
that, in some special model, the integral in (5.9b) and hence the prefactor 
B~ for :r = # vanishes. If by coincidence the rhs of (5.9b) should vanish, 
then the small-x behavior of 7(x) is determined by the correction terms to 
the dominant behavior (1.3b) of K(u, v). For instance, if K(u, v) is of the 
form (4.32) as v --, o% then Eq. (5.8b) is replaced by 

RHS(5.7) ~ K1B dub/1+#1 T dvv'~-"~-~?(v ) (x ~, 0) (5.10) 

so that instead of (5.9a), (5.9b) one finds 

fo o B1 = (Kt B/wl.q) dv 1) '~--  ]Zl --  ~r 

(5.11a) 

(5.11b) 
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However, we emphasize that, in general, B~ in (5.9b) does not vanish. For 
instance, in simple models, such as K(x, y) = (xy) '~ with �89 < co ~< 1, it can be 
verified that Bj is nonvanishing for ~ = #. Thus, Eq. (5.6) with ~ and B~ 
given by (5.9) represents the generic behavior of r as x+0.  This 
concludes our study of the asymptotic properties of the scaling function 
cp(x) in gelling models. 

6. A SPECIAL  CASE: k - - 1  

In this section we discuss coagulation kernels with a degree of 
homogeneity exactly equal to unity, which are nongelling according to the 
discussion of Section 2. 

Within the class of kernels with 2 -  1 we distinguish models with # = 0 
(class II) and # > 0 (class I). In class II (/~ = 0), the results of Section 4 are 
valid also for models with 2 = v = 1. The reason is that in class II, the 
exponent satisfies ~ < l + v = 1 + 2 = 2 [see (4.16)], and hence Pl < ~ in 
this case. All restrictions imposed in class II are satisfied. The time depen- 
dence of s(t) for 2 = 1 is given by s(t) ~ So ew' if t ~ ~ ,  as follows from (4.2). 

In class I the solution valid for 2 < 1 breaks down for 2 = 1, since 
ek(t) ~s ( t )  -2 q~(k/s(t)) with ~0(x)~ Bx -2 (x+ 0) implies that the sol mass 
diverges as s ~ ~ :  

M l ( t ) ~  d x x q ) ( x ) ~ B l o g s ~  oo ( s ~  oo) (6.1) 
- I  

which contradicts the conservation law M~(t )= 1. We infer from (6.1) that 
for class I models with 2 = 1, the scaling Ansatz (4.1) is incorrect. In 
Appendix B we show how the scaling law (4.1) can be modified. Below, we 
summarize the results. 

The method for obtaining scaling solutions of Smoluchowski's 
equation if 2 = 1 is based on the known large-time behavior of the cluster 
size distribution. The relevant results are summarized in Appendix A. It is 
known (~9'2~ that in class I models as t ~ o% for a fixed value of the cluster 
size k, the ratio ck(t)/cl(t) approaches a finite, nonvanishing limiting value 
bk. The constants b k satisfy the recursion relation (A.2), from which the 
asymptotic behavior may be calculated. For  2 = 1 the result is 

bk ~ [E~/2J(2)] k -2 log k (k ~ ~ ) (6.2) 

with E~ and J(v) given in (A.2b) and (2.4b), respectively. The appropriate 
scaling Ansatz turns out to be 

ck(t) s el(t)bkq~(k/s(t)) (6.3) 
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with the initial value of 4~(x) given by ~(0)-= 1. Obviously, for a fixed 
value of k, the scaling Ansatz (6.3) gives the correct large-time behavior, 
since k/s(t) ~ O, and <b(k/s(t)) ~ 1 as t ~ oo. 

Substitution of the scaling Ansatz (6.3) into the normalization of the 
sol mass, ~2 kck(t) = 1, shows (see Appendix B) that the time dependence of 
the monomer concentration c~(t) is given by 

c~(t) ,,~ [4J(2)/E~] [log s(t)] -2 (t ~ oe) (6.4) 

Substitution of the Ansatz (6.3) in combination with (6.4) into 
Smoluchowski's equation (2.1) yields first an equation for the mean cluster 
size: 

s-1~ log s = 2w; s(t) = s o exp[2(wt) m ] (6.5) 

Second, we find an equation for the scaling function q~(x). If we introduce 

q)(X) ~- x--Z(/5(X); ~(0) = 1 (6.6) 

then q~(x) satisfies Eq. (3.17), where the separation constant w has a fixed 
value, w =  J(2). The small-x behavior of q~(x) is trivially given by 
q~(x)~x -2 as x~0. The large-x behavior is given by (4.5), (4.7a), and 
(4.7b). By construction, the large-time behavior of Cg(t) agrees with the 
scaling solution for small values of the argument x = k/s(t). Similarly, the 
large-k solution at fixed t agrees with (6.3) in the scaling limit if x,> 1. 

7. S U M M A R Y  AND DISCUSSION 

We start with a summary of our results. In this paper we have studied 
scaling solutions of Smoluchowski's coagulation equation for homogeneous 
kernels with an exponent v < 1. The homogeneous kernels constitute a 
large class of mathematical models for the reaction rates K(i, j), which 
includes all physical kernels used in the literature (see, e.g., Ref. 3). Within 
the class of homogeneous coagulation kernels, we distinguish gelling 
()~ > 1) and nongelling (2 ~< 1) models. In gelling models the mean cluster 
size s(t) diverges at a finite time tc as s(t) oc ( t o -  t) -1/~, where the critical 
exponent ~ has the value a = � 8 9  The scaling function q~(x) falls off 
algebraically as x ~0, q)(x)~ Bx -~, with the critical exponent z = �89 + 3). 
In nongelling models the mean cluster size diverges as t ~ oo. If 2 < 1 one 
finds that s(t) oct z with z =  1/(1 --2). Alternatively, for ~, = 1, logs(t) cc t if 
/~= 0 (class II), or log s(t)oc x / t  if /~ > 0  (class I). The scaling function 
q~(x) in nongelling systems falls off algebraically for small x in classes I and 
II, with z = 1 + 2 in class I, and ~ related to integrals over q0(x) in class II. 
In class III, q~(x) falls off exponentially fast as x ~ 0. For large x values, the 
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scaling function ~0(x) in all gelling and nongelling models falls off exponen- 
tially, as in (4.5). 

The scaling solutions studied in this paper have been investigated for 
small and large values of the scaling argument x = k/s(t) with the use of 
self-consistent methods. Therefore, we should emphasize that the existence 
of scaling solutions and the approach to the scaling solutions from arbitrary 
initial conditions have not been proven in general. Such a proof has been 
given only for the exactly solvable models K(x, y ) =  xy, K(x, y ) - x +  y, 
and K(x, y)= 1. 

For the nongeIling models of class I, we have not been able to find the 
first correction to the leading small-x behavior (4.15). Here the question of 
existence of certain classes of solutions presents itself. We cannot exclude 
the possibility that in this case no solution q~(x) of Eq. (4.3) or (3.17) exists 
that satisfies the physical requirement that the total mass be finite, Pl < ~ .  

For many nongelling models in class III and for special models in 
class II, including K(x, y) = x ~ + y~ with 0 < co ~< 1, one may construct the 
exact scaling function ~0(x) in the form of a series representation, so that in 
classes II and lII the question of existence of scaling solutions seems rather 
academic. The same remark applies to the gelling models of class I, where 
for special cases, such as K(x, y) = (xy) ~ with �89 < co ~< 1, one is also able to 
give an exact solution of the ~0(x) equation. The results concerning exact 
solutions will be published elsewhere. (18) In any model, apart from the 
three exactly solvable models mentioned above, the question of approach 
to the scaling solution from arbitrary initial conditions remains open. 

Next we discuss the relation between the results from the scaling 
theory and the results obtained in the limits k ~ o0 with t fixed, and t ~ 
with k fixed. In Section 4.2 we have shown for nongelling systems with 
2 < 1 that if s ( t )~  ~v the behavior (4.4) for k>>s(t) coincides with the 
prediction (4.5), (4.7a), (4.7b) from the large-x behavior of the scaling 
function theory. This shows that the regions of validity of the two limiting 
solutions--(1) first k ~ ,  next s ( t ) ~ ,  and (2) first k and s ( t ) ~ ,  
with x = k/s(t) fixed, next x--* ~ - - a r e  overlapping. The same result holds 
for nongelling systems with 2 = 1 (see Appendix B) and for gelling systems 
(~>1). 

The relation between the scaling function results and the large-time 
results of Leyvraz (~9) and of van Dongen and Erns(2~ is discussed next. 
We consider only class I, since in classes II and III the behavior of Ck(t) as 
t --+ ~ with k fixed is nonuniversal, i.e., depends on the initial distribution 
Ck(O). Within class I we consider only the nongelling models (2 ~< 1), since 
for gelling models the scaling limit is relevant at to, not at t = ~ .  For the 
nongelling models of class I the ratio ck(t)/c~(t) approaches a finite, non- 
vanishing limit as t ~  ~ ,  independent of the initial conditions: ck(t)/ 
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c~(t) -* bk. The relevant large-time results are summarized in Appendix A. 
For class I models with ~. < 1 the behavior of c~(t) as t -* oe and of bk for 
k~> 1 is given in (A.3) and in (A.7a), (A.8), respectively. Combination of 
these results yields the same expression for ck(t) as the scaling function 
results (4.1) and (4.2) if the small-x behavior of ~0(x) is given by (4.15). For 
class I models with 2 = 1, the scaling law (6.3) is constructed in such a way 
that for t -* oe it agrees with the large-time results (A.1), (A.3), and (A.9). 
We conclude that for ck(t) in the nongelling models of class I, there are 
overlapping regions of validity of the two limits: (1) first t -* 0% next 
k -*  0% and (2) k, s(t)-* ~ ,  with k/s(t) fixed, and next x+0. 

Finally we mention some numerical results concerning the scaling 
functions in class III ( # < 0 ) ,  which have been discussed in Section 4.6. 
Swift and Friedlander (6) calculated the shape of the scaling function for 
Brownian coagulation, which is supposedly described by the kernel 
K3(x, y) in (4.37) if the exponent is given by # = -1/3 .  They found as an 
estimate for the exponent 7 in (4.38c) the value 7 -  1.06. New numerical 
results have recently been obtained by Meesters and Ernst, (2~) who 
calculated the scaling function ~o(x) for the kernels K~, K2, and K4 in (4.37) 
for various values of the exponent/~. These authors numerically study the 
crossover of the scaling function from class III behavior to class II 
behavior as the exponent # vanishes:/~ ~' 0. Analytically the nature of this 
crossover is obvious from (4.35), at least for the kernels K1 and K4. 

A P P E N D I X  A. S U M M A R Y  OF L A R G E - T I M E  R E S U L T S  

For all models of class I (/~ > 0), Leyvraz ~19) and van Dongen and 
Ernst (2~ have shown that the ratio of the k-met concentration to the 
monomer concentration, ck(t)/c~(t), approaches a positive constant bk as 
t -* 0% with the cluster size k kept fixed: 

ck(t)/cl(t)-*b k ( t -*m)  (A.1) 

The constants bk satisfy the following recursion relation: 

k k 

E1 ~ jbj = Z ~ iK(i, j) bibj (A.Za) 
j = l  i = 1  j - - k - - i + l  

where the factor E~ is given by 

E1 = ~ K(1, j)  bj (A.2b) 
j = l  

It is obvious from (A.l)-that the initial condition for (A.2) is b~ = 1. The 
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time dependence of the monomer concentration Cl(t) can be determined by 
inserting (A.1) into Eq. (1.1) for k =  1. This yields cl = -El(c1) 2, or 

c1(1) ~ ( g l t )  - 1  (t--~ ~ )  (A .3 )  

The asymptotic behavior of b~ in (A.2) for all gelling and nongelling 
models can readily be determined as follows. We assume that as i, k ~ ~ ,  
with u = i/k fixed, the solution bk of (A.2) has the rather general property 

bi/bk = b~k/bk ~ f ( u )  (k ~ oo ) (A.4) 

where f ( u )  is a continuous function of u. Insertion of (A.4) into (A.2a) 
shows that for large k, (A.2a) reduces to 

k 

E 1 ~ j b j ~  Ck3+;(bk) 2 (k ~ or) (A.5a) 
j = l  

where the constant C is given by 

fo' C = - du dv uK(u, v ) f ( u ) f ( v )  
1--u  

(A.5b) 

Differentiation of Eq. (A.5) with respect to k gives the following differential 
equation for bk: 

, 4  
[k(3 + .W2bk -] ,.,., ~ 1  k - (1  + ~)/2 

dk 2C 
( k ~  ~ )  (A.6) 

Integration of Eq. (A.6) is elemenfary. For gelling systems (2 > l) the 
result is 

bk ~ Bk -~ (k ~ ~ )  (A.7a) 

where the exponent z and the prefactor B are given by 

~=()~+ 3)/2; B = I E 1  ~ jbj /J(z)]  1/2 (A.7b) 
j = l  

In the derivation of (A.7) we have used that f ( u ) =  u -~ and C =  J(z), with 
J(Q defined in (2.4b). For nongelling systems with 2 < 1 one finds again the 
form (A.7a), now with 

l = ] + )~; B = g l / [ ( l  - 3~) J ( ' c ) ]  (A .8 )  
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Finally, if 2 = 1, integration of Eq. (A.6) gives 

b~ ~ [ E~/2J( 2 ) ] k -2 log k 

where we used f ( u )  = u 2 and C = J(2). 

(k--* oo) (A.9) 

A P P E N D I X  B. S C A L I N G  F U N C T I O N  R E S U L T S  FOR k = l  

For nongelling models in class I with 2 = 1, the large-time behavior 
(A.1) suggests that the cluster size distribution G(t)  approaches a scaling 
solution of the form 

ck(t) s cl(t) bk~(k/s( t ) )  (g.1) 

with ~b(0)= 1. More generally, Eq. (B.1) should hold for all nongelling 
(2 ~< 1) models in class I, and, in fact, if 2 < 1, Eq. (B.1) in combination 
with Eqs. (A.3), (A.7a), and (A.8) is equivalent to the conventional scaling 
form (4.1). For 2 =  1, the asymptotic behavior of bk is calculated in 
Eq. (A.9) of Appendix A. 

The relation between the monomer concentration c~(t) in (B.1) and 
the mean cluster size s(t) can be determined from the requirement that the 
sol mass is equal to unity. With x =-k/s(t) we have 

1=  ~, kCk,.~c 1 ~ kbkClg(x ) 
k ~ l  k = l  

,~ [E1/2J(2 )] c 1 ~ k- l ( log  k) q~(x) (B.2) 
k = l  

If we substitute into (B.2) the relation 

log k = log x + log s 

then we can approximate (B.2) as 

(B.3) 

~s ~176 
1 ~ [Ed2Y(2)] cl d x x - X ( l o g x + l o g s )  ~ ( x )  

- 1  

~ [Ed4J(2)]  c~(log s) 2 Is(t) ~ ~ ] (B.4) 

In the limit s ~ ~ this implies (6.4) for cl(t). 
Equation (B.1), in combination with (6.2) and (6.4), implies that the 

usual scaling hypothesis (4.1) for nongelling models is slightly modified. In 
the scaling region, where x in (B.3) is kept fixed, so that 

log k,-~ log s ( s ~  ~ )  (B.5) 
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Eq. (B.1) reduces to 

ek(t) ~ 2(s log s)-2(log k) q~(x) (B.6a) 

,-~ 2(s2 log s) -1 ~0(x) [s(t) --+ oo] (B.6b) 

where we have introduced the scaling function ~o(x)==-x-2q~(x). Com- 
parison of (B.6) with (4.1) shows that (B.6) contains an extra factor 
(log s) -1. We further note that for 2 = 1, all mass is contained in cluster 
sizes much smaller than s(t), just as in gelling systems. A similar argument 
as in (B.2)-(B.4) shows that for all e > 0, the mass contained in clusters 
with size k <<, es(t) approaches unity as s(t) ~ ~ ,  i.e., M(~S)(t) ~ 1 (s --, oo ). 

Next we derive an equation for the scaling function ~(x)  or, 
equivalently, for q~(x). We proceed along similar lines as in (3.15a), (3.15b) 
and we substitute the Ansatz (B.1) into the lhs of Eq. (2.1): 

- - i j 6 j  = ~ jCj= ~ jbj[Cl~(X)--kelS*t(x)/s 2 ] ( B , 7 )  

j = l  j = k + l  j = , k +  1 

Substitution into (B.7) of the asymptotic behavior (6.2) of b~ and use of 
(6.4) and (B.5) shows that the second term in the rhs of (B.7) is dominant 
as s--, ~ :  

k 

-- ~ j k j~  [EI/2J(2)] C1SS -1  log s ay cp,(y) 
j = l  

(2~/s log s) qS(x) (B.8a) 

Similarly, replacing ck(t) by the scaling Ansatz (B.1) and using (B.5), we 
find for the rhs of (2.1): 

k 

~ iK(i,j) cicj 
i = 1  j--k--i+l 

k 

(e j)2 Z ~ iK(i, j) bibfiS(i/s) q~(j/s) 
i = 1  j=k--i+l 

4(log s) 2 du dv uK(u, v) q)(u) ~o(v) (B.8b) 
--u 

Combination of (B.8a), (B.8b) and separation of the x and t dependences 
finally yields Eq. (6.5) for s(t) and Eq. (3.17) for q~(x). If we take the limit 
xJ, 0 in Eq. (3.17) and use the fact that ~ ( 0 ) =  1, we obtain an explicit 
expression for the separation constant w in (3.17), namely w =  J(2). The 
time dependence of c~(t) as obtained from (6.4) and (6.5) agrees with the 
result (A.3) from the large-time solution. 
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The smal l -x  behavior of q ~ ( x ) = x  2~b(x) is obviously given by 
~0(x) ~ x -2 (x + 0). We have not  been able to determine correct ions to the 
dominan t  term, as was the case for all nongell ing models  of class I. The  
large-x behav ior  of  the solution r of (3.17) is determined in (4.5), (4.7). 

Finally, we discuss the relat ion between the scaling forms (B.6a), 
(B.6b) and the large-t ime (fixed-k) behavior  and large-k (fixed-t) behavior  
of ek(t). Clearly, bo th  forms (B.6a) and (B.6b) are equivalent  in the scaling 
limit k, s ~ Go, x = k / s  fixed. Equa t ion  (B.6a), or ra ther  Eq. (B.1), has the 
addit ional  advantage  tha t  it gives the correct  large-t ime behavior  if we take 
the limit s ~ ~ with k fixed. This implies that  the large-t ime result (A.1) is 
valid also in the scaling limit, provided that  x = k /s  ~ 1. Similarly, there is a 
c o m m o n  region of validity for the scaling result and the results (4.4a), 
(4.4b) obta ined  in the limit k ~ ~ ,  s fixed. This can be seen by inserting 
into (4.4) the Ansatz  z ( t ) =  - 6 / s ( t )  and taking the scaling limit, where x = 
k / s ( t )  ~> 1 is kept  fixed. This concludes our  remarks  concerning nongell ing 
class I models  with 2 = 1. 
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